Study of Direct Torque Control Scheme for Induction Motor Based on Torque Angle Closed-Loop Control

نویسندگان

  • Xuande Ji
  • Daqing He
  • Yunwang Ge
چکیده

Abstract: For disadvantages of the large flux and torque ripple and current waveform distortion of Direct Torque Control (BASIC-DTC), the DTC scheme for induction motor based on torque angle closed-loop control was presented and the proposed scheme was realized with three methods of torque angle closed-loop control. The main characteristics of three methods of torque angle closed-loop control for the proposed scheme was analyzed, emphasizing their advantages and disadvantages. The performance of three methods of torque angle closed-loop control for the proposed scheme was studied in terms of flux and torque ripple, current waveform distortion and transient responses. Simulation results showed that the proposed scheme improves the performance of induction motor BASIC-DTC by combining low flux ripple, low torque ripple and low current waveform distortion’s characteristics with fast dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drives Using Artificial Intelligence

The main theme of this paper is to present novel controller, which is a genetic based fuzzy Logic controller, for interior permanent magnet synchronous motor drives with direct torque control. A radial basis function network has been used for online tuning of the genetic based fuzzy logic controller. Initially different operating conditions are obtained based on motor dynamics incorporating...

متن کامل

Improved Direct Torque Double Closed-Loop Control Algorithm for Induction Motor

This paper presents an improved direct torque control (DTC) algorithm as compared to a traditional DTC scheme. In the traditional scheme, a pair of hysteresis comparators is used to control motor stator flux and electromagnetic torque. This causes a variable switching frequency which results in a high flux and torque ripples. To mitigate these issues, an improved DTC algorithm based on a double...

متن کامل

Seven-Level Direct Torque Control of Induction Motor Based on Artificial Neural Networks with Regulation Speed Using Fuzzy PI Controller

In this paper, the author proposes a sensorless direct torque control (DTC) of an induction motor (IM) fed by seven-level NPC inverter using artificial neural networks (ANN) and fuzzy logic controller. Fuzzy PI controller is used for controlling the rotor speed and ANN applied in switching select stator voltage. The control method proposed in this paper can reduce the torque, stator flux and to...

متن کامل

On Line Determination of Optimal Hysteresis Band Amplitudes in Direct Torque Control of Induction Motor Drives

In conventional direct torque control (DTC) of induction machines, undesirable flux and torque ripples are produced. These occur since non of the selected inverter's voltage vectors are able to generate the exact voltage required to produce the desired changes in the electromagnetic torque and stator flux linkage in most of the switching instances. In addition, when direct torque control is imp...

متن کامل

Robust Adaptive Fuzzy Sliding Mode Control of Permanent Magnet Stepper Motor with Unknown Parameters and Load Torque

In this paper, robust adaptive fuzzy sliding mode control is designed to control the Permanent Magnet (PM) stepper motor in the presence of model uncertainties and disturbances. In doing so, the nonlinear model is converted to canonical form, then, for designing the controller, the robust sliding mode control is designed to decrease the effects of uncertainties and disturbances. A class of fuzz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015